Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
J Biosci ; 2020 Jun; : 1-17
Article | IMSEAR | ID: sea-214283

ABSTRACT

Japanese encephalitis virus, a neurotropic flavivirus, causes sporadic encephalitis with nearly 25% fatal casereports. JEV infects neural stem/progenitor cells (NSPCs) and decreases their proliferation. Statin, a commonlyused class of cholesterol lowering drug, has been shown to possess potent anti-inflammatory and neuroprotective effects in acute brain injury and chronic neurodegenerative conditions. Here, we aimed to check theefficacy of atorvastatin in alleviating the symptoms of Japanese encephalitis (JE). Using BALB/c mouse modelof JEV infection, we observed that atorvastatin effectively reduces viral load in the subventricular zone (SVZ)of infected pups and decreases the resultant cell death. Furthermore, atorvastatin abrogates microglial activation and production of proinflammatory cyto/chemokine production post JEV infection in vivo. It alsoreduced interferon-b response in the neurogenic environs. The neuroprotective role of atorvastatin is againevident from the rescued neurosphere size and decreased cell death in vitro. It has also been observed that uponatorvastatin administration, cell cycle regulatory proteins and cell survival proteins are also restored to theirrespective expression level as observed in uninfected animals. Thus the antiviral, immunomodulatory andneuroprotective roles of atorvastatin reflect in our experimental observations. Therefore, this drug broadens apath for future therapeutic measures against JEV infection.

2.
Article in English | IMSEAR | ID: sea-135679

ABSTRACT

Repurposing of old drugs is a useful concept as it helps to minimize costs associated with the research and development of a new drug. Minocycline, a common second generation antibiotic, has been shown to possess several other beneficial effects other than its intended uses. The antiviral role of minocycline has generated considerable interest from the last decade. It was first shown to be beneficial in preventing human immunodeficiency virus (HIV) infections and later it was reported to improve cognitive deficiencies associate with neuroAIDS. However, its antiviral efficacies are not limited to retroviruses alone. In animal models or in vitro systems of flaviviral infections (especially Japanese encephalitis virus), minocycline has been shown to be highly effective. However, not all effects are based on direct inhibition of viral replication. The general anti-inflammatory and immunomodulatory properties of minocycline are also responsible in part, in imparting the protective effects. Owing to the fact that minocycline is well tolerated by most people and that the drug has nearly 40 years history of usage, it is an exciting prospect to try out in other viral infections.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Humans , Immunologic Factors/therapeutic use , Minocycline/therapeutic use , Virus Diseases/drug therapy , Virus Diseases/immunology
3.
Indian J Exp Biol ; 2010 Nov; 48(11): 1103-1110
Article in English | IMSEAR | ID: sea-145069

ABSTRACT

Mechanisms of interleukin-18 (IL-18) and interleukin-10 (IL-10) in lipopolysaccharide (LPS) induced endotoxemia are not clear; their protective role is being investigated so that they may effectively modulate the host cytokine levels during endotoxemia. The aim of the study was to evaluate protective effects of IL-18 and IL-10 in experimentally induced endotoxemia in mice correlating the changes in tissue anti-oxidant enzymes and circulating cytokines. Liver injury was determined by estimation of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), serum nitric oxide (NOx), hepatic anti-oxidant enzyme and cytokine content in LPS (250 g/kg) induced endotoxemic mice receiving either IL-18 (500 ng/mouse) or IL-10 (600 ng/mouse) treatment. Mice (87% of IL-10 treated and 74% of IL-18 treated) survived when administered prior to LPS challenge. Pre-treatment of mice with either IL-10 or IL-18 followed by LPS, lead to reduction in SGPT and SGOT level, serum NOx, and altered hepatic anti-oxidant enzymes activity and myeloperoxidase activity than the only LPS treated group. Marked reduction in the amounts of LPS-induced hepatic and splenic TNF- content has been observed after IL-10 pre-treatment. Results suggested that attenuating the induction of TNF- and IFN- and subsequent induction of nitric oxide formation in response to LPS may in part account for efficient protection by IL-18 and IL-10 in the reduction of LPS-induced liver injury.

4.
Indian J Exp Biol ; 2010 June; 48(6): 529-537
Article in English | IMSEAR | ID: sea-145002

ABSTRACT

Neurons and astrocytes differentially express isoenzymes of lactate dehydrogenase (LDH). The metabolic consequences for the variations in mRNA expression of LDH isoenzyme subtypes in neurons and astrocytes control cerebral vasoregulation. Moreover, cellular signalling consequences for functional neurovascular control may also be dependent on LDH isoenzyme subtype profiles. Initial computer simulations revealed glutamate-induced calcium waves in connected astrocytes, and showed concomitant changes in the expression of nitric oxide synthase (NOS) and lactic acid metabolism. To validate these findings, the nature and extent of glutamate-dependent signalling crosstalk in murine cell lines were investigated through correlated lactate levels and calcium upregulation. Neuro2A and C8D1A cells were separately treated with timed supernatant extracts from each other and their LDH1 and LDH5 isoenzyme responses were recorded. Western blot analysis showed LDH1/LDH5 isoenzyme ratio in the astrocytes to be positively correlated with Neuro2A-derived lactate levels estimated by the amplitude of 1.33-ppm spectral peak in 1H-NMR, and LDH1/LDH5 isoenzyme ratio in neurons is negatively correlated with C8D1A-derived lactate levels. Significant modulations of the calcium-responsive protein pCamKII levels were also observed in both cell lines, particularly correlations between pCamKII and lactate in C8D1A cells, thus explaining the calcium dependence of the lactate response. Together, these observations indicate that lactate is a key indicator of the metabolic state of these cell types, and may be a determinant of release of vasoregulatory factors.

SELECTION OF CITATIONS
SEARCH DETAIL